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Suppose we are interested in how the exercise and body mass index affect the blood pressure. A 
random sample of 10 males 50 years of age is selected and their height, weight, number of hours of 
exercise and the blood pressure are measured.  Body mass index is calculated by the following 

formula:     (    ⁄ )  
(                    )

                 
. 

 

 

 

 

Select Stat-Regression-Regression… from the pull-down menu. 

Placing the variable we would like to predict, blood pressure, in the “Response:” and the variable 

we will use for prediction, exercise and body mass index in the “Predictors:” box. Click OK. 

This generates the following Minitab output. 

 
The regression equation is 

BloodPressure = 74.5 - 2.84 Exercise + 2.71 BMI 

 

 

Predictor    Coef  SE Coef      T      P 

Constant    74.49    29.41   2.53  0.039 

Exercise   -2.836    1.861  -1.52  0.171 

BMI        2.7119   0.9144   2.97  0.021 

 

 

S = 11.9087   R-Sq = 80.4%   R-Sq(adj) = 74.8% 

 

 

Analysis of Variance 

 

Source          DF      SS      MS      F      P 

Regression       2  4079.8  2039.9  14.38  0.003 

Residual Error   7   992.7   141.8 

Total            9  5072.5 

 

The interpretation of R
2
 is same as before. We can see that 80.4% of the variation in Y is 

explained by the regression line. The fitted regression model found from the output is  

(Blood Pressure) = 74.5 - 2.84 * Exercise + 2.71 * BMI. 
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The next part of the output is the statistical analysis (ANOVA-analysis of variance) for the 

regression model. The ANOVA represents a hypothesis test with where the null hypothesis is  

0: ioH   for all i  (In simple regression, i = 1) 

0: iAH   for at least 1 coefficient 

In this example, p-value for this overall test is .003 concluding at least one of independent 

variables is significantly meaningful to explain the blood pressure.  

 

The individual t-test can also be performed.  

 

                  
                  

 

In this example p-value is .171 and .021. Thus, 
1

  is not significantly different from zero when 

body mass index is in the model, and  
2

  is significantly different from zero when body mass 

index is in the model.   

 

Model assumption checking and prediction interval can be done in the similar manner as the 

simple regression analysis. Normal probability plot and residual plot can be obtained by clicking 

the “Graphs” button in the “Regression” window, then checking the “Normal plot of residuals” 

and “Residuals versus fits” boxes. Click OK to exit the graphs window, click OK again to run 

the test. 
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Full and Reduced Models 

 

Sometimes in multiple regression analysis, it is useful to test whether subsets of coefficients are 

equal to zero. To do this a partial F test will be considered. This answers the question, “Is the full 

model better than the reduced model at explaining variation in y?” The following hypotheses are 

considered: 

                
                                                                    

 

Where L represents the number of variables in the reduced model and K represents the number 

of variables in our full model. Rejecting    means the full model is preferred over the reduced 

model, whereas not rejecting    means the reduced model is preferred.The Partial F is used to 

test these hypotheses and is given by 

 

         
(   (       )     (    )) (   )

   (    ) (     )
 

 

Note that the denominator is the     from the full model’s output. 

 

The decision rule for the Partial F test is: 

  

Reject    if F > F(α; K-L, n-K-1) 

 Fail to reject    if F ≤ F(α; K-L, n-K-1) 

 

In our example above we might consider comparing the full model with exercise and BMI 

predicting blood pressure to a reduced model of the BMI predicting blood pressure at the α=0.05 

level. To calculate the partial F we will run the regression for the reduced model by clicking 

Stat-Regression-Regression… and putting BloodPressure in as the “Response:” variable and 

BMI in as the “Predictors:” variable and click “OK.” The reduced model output reads: 

 
The regression equation is 

BloodPressure = 41.0 + 3.61 BMI 

 

 

Predictor    Coef  SE Coef     T      P 

Constant    40.98    21.07  1.94  0.088 

BMI        3.6060   0.7569  4.76  0.001 

 

 

S = 12.8545   R-Sq = 73.9%   R-Sq(adj) = 70.7% 

 

 

Analysis of Variance 

 

Source          DF      SS      MS      F      P 

Regression       1  3750.6  3750.6  22.70  0.001 

Residual Error   8  1321.9   165.2 

Total            9  5072.5 

 

 

To calculate the partial F we will use the output for the full model found on page 1 and the 

reduced model output above. 

 



Multiple Regression Analysis in Minitab 

 

  

4 

         
(   (       )     (    )) (   )

   (    ) (     )
 
(            ) (   )

(     ) (      )
      

 

Then use an F-table to look up the value for F(α; K-L, n-K-1) = F(0.05; 1, 7) = 5.59. According 

to our decision rule, 2.32 ≤ 5.59. This means we fail to reject   . This means that at the α=0.05 

level we have found evidence that the reduced model is more efficient at explaining the games 

won. 

 

Calculating Confidence Intervals and Prediction Intervals 

 

Calculating CI and PI for multiple regressions are fairly similar to simple linear regressions. For 

multiple regressions you can create the intervals for your model based on the predictor variables. 

Consider the full model from earlier in this tutorial. We can predict the CI and PI for 6 hours of 

exercise and a BMI of 20.1 by entering the values in as seen below after clicking Stat-

Regression-Regression-Options… to get to the window.  

 

 
 

Then press “OK” and “OK” to run the regression analysis. The output will now include: 

 
Predicted Values for New Observations 

 

New Obs     Fit  SE Fit       95% CI           95% PI 

      1  111.98    6.38  (96.88, 127.08)  (80.03, 143.93) 

 

 

Values of Predictors for New Observations 

 

New Obs  Exercise   BMI 

      1      6.00  20.1 

 

 

The 95% CI for this combination is (96.88, 127.08) and the 95% PI is (80.03, 143.93). The 

values entered can be seen at the bottom of the output to ensure each variable was correctly 

entered and not accidentally switched around or mistyped. 
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Transformation of Variables 

 

It is not always obvious what to do when your model does not fit well. Transformations may be 

the easiest way to produce a better fit, especially when collecting more data is not feasible. 

Options to try include polynomial regression, inverse transformation, log transformation of the 

explanatory variable, log transformation of dependent and explanatory variable, and many more 

transformations. This tutorial will look at creating an inverse transformation for the model and 

storing this information in your Minitab sheet. 

 

Click Calc-Calculator… and enter your information in the appropriate spaces in the window 

that pops up. 

 

 
 

Choose a column without data stored in it to store your inverse transformation. In the expression 

blank enter the appropriate algebra and functions for your transformation. Then press “OK” and 

your transformation will then appear in your Minitab sheet. Use this variable instead of the 

original variable in your regression to see if the model becomes a better fit. 

 

A Potential Problem with Multiple Regression 

 

When explanatory variables are correlated with one another, the problem of multicollinearity, or 

near-linear dependence among regression variables, is said to exist. When a high degree of 

multicollinearity exists, the variance of the regression coefficients are infalted. This can lead to 

small t-values and unstable regression coefficients. Multicollinearity does not affect the ability to 

obtain a good fit to the regression (  ) or the quality of forecasts or predictions from the 

regression. 

 

The way to determine if this is a problem with your model is to look at the Variance Inflation 

Factors (VIFs). The equation for the VIF for the jth regression coefficent    can be written as 

     
 

    
 , where   

  is the coefficient of multiple determination obtained by performing the 
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regression of    on the remaining K-1 regressor variables. Any individual VIF larger than 10 

should indiciate that multicollinearity is present. 

 

To check for VIFs in Minitab click Stat-Regression-Regression… from the drop-down menu. 

Next click the Options button. Then check the “Variance inflation factors” box under Display, 

click OK. Then click OK again to run the test. 

 

 
 

The data created in the output will look identical to the data collected before, except the table of 

coefficient will contain an additional column of information: 
 

Predictor    Coef  SE Coef      T      P    VIF 

Constant    74.49    29.41   2.53  0.039 

Exercise   -2.836    1.861  -1.52  0.171  1.701 

BMI        2.7119   0.9144   2.97  0.021  1.701 

 

Seeing the both our VIFs are below 10 we assume multicollinearity is not present in our model. 

 

Correcting Multicollinearity 

 

In order to correct for multicollinearity you need to remove the variables that are highly 

correlated with others. You can also try to add more data, this might break the pattern of 

multicollinearity. 

 

There are drawbacks to these solutions. If you remove a variable you will obtain no information 

on the removed variable. So choosing which correlated variable to remove can be difficult. If 

you add more data the multicollinearity won’t always disappear, and sometimes it is impossible 

to add more data (due to budget restraints or lack of data beyond what is known). 

 

If a regression model is used strictly for forecasting, corrections may not be necessary. 


